Given the non-homogeneous linear ODE with constant coefficients
$a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{n-2} y^{(n-2)}+\cdots+a_{1} y^{(1)}+a_{0} y=b(x)$
where $b(x)$ consists only of sums and products of $x^{k}, e^{m x}, \cos n x, \sin n x$ and constants, where k is a non-negative integer, and m and n are constants:
eg. $y^{(7)}-y^{(5)}-2 y^{(4)}+2 y^{(3)}=x^{2}\left(1-2 e^{x}\right)+x e^{-x}\left(3 x^{2} e^{2 x}-4 \cos x\right)$

1. Solve the corresponding homogeneous linear ODE $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{n-2} y^{(n-2)}+\cdots+a_{1} y^{(1)}+a_{0} y=0$ using the characteristic polynomial.

Call the general solution y_{h}.

$$
\begin{array}{lll}
\hline \text { eg. } & y^{(7)}-y^{(5)}-2 y^{(4)}+2 y^{(3)}=0 & \\
& r^{7}-r^{5}-2 r^{4}+2 r^{3}=0 & \\
r^{3}\left(r^{4}-r^{2}-2 r+2\right)=0 & \text { Greatest common factor } \\
& r^{3}\left(r^{2}\left(r^{2}-1\right)-2(r-1)\right)=0 & \text { Factor by grouping } \\
& r^{3}\left(r^{2}(r+1)(r-1)-2(r-1)\right)=0 & \\
& r^{3}(r-1)\left(r^{2}(r+1)-2\right)=0 & \text { Greatest common factor } \\
& r^{3}(r-1)\left(r^{3}+r^{2}-2\right)=0 & r^{3}+r^{2}-2=0 \text { when } r=1 \text {, so } r-1 \text { is a factor } \\
& r^{3}(r-1)(r-1)\left(r^{2}+2 r+2\right)=0 & \text { Synthetic division } \\
& r^{3}(r-1)^{2}\left(r^{2}+2 r+2\right)=0 & \\
& r=0,0,0,1,1,-1 \pm i & \text { Quadratic formula }
\end{array}
$$

$$
y_{h}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} e^{x}+c_{4} x e^{x}+c_{5} e^{-x} \cos x+c_{6} e^{-x} \sin x
$$

2. Distribute all multiplications in $b(x)$, and write $b(x)$ strictly as a sum of product terms.
eg. $\quad b(x)=x^{2}-2 x^{2} e^{x}+3 x^{3} e^{x}-4 x e^{-x} \cos x$

Group the terms of $b(x)$ which have all the same factors, with the exception of constant factors and factors of the form x^{k}.

Factor out all those same factors from each group.
Each group of $b(x)$ should now be a sum of terms of the form $c_{k} x^{k}$ (ie. polynomials, possibly consisting of just one constant), multiplied (possibly) by factors not containing.x^{k}.
eg. $\quad b(x)=\left(x^{2}\right)+\left(3 x^{3}-2 x^{2}\right) e^{x}+(-4 x) e^{-x} \cos x$
3. For each group in $b(x)$, include that group in y_{p}, but
[i] replace any polynomial factors with general polynomials of the same degree using undetermined coefficients,
eg. $y_{p}=\left(A x^{2}+B x+C\right)+\left(D x^{3}+E x^{2}+F x+G\right) e^{x}+(H x+J) e^{-x} \cos x$
[ii] if that group now contains any term that also appears in y_{h}, multiply that group by x^{d}, where d is the smallest positive integer power such that the new group no longer contains any like-terms in y_{h}.
eg. $\quad 1^{\text {st }}$ group

$$
\begin{array}{ll}
A x^{2}+B x+C & \text { has like-terms } x^{2}, x \text { and a constant in } y_{h} \\
x\left(A x^{2}+B x+C\right)=A x^{3}+B x^{2}+C x & \text { has like-terms } x^{2} \text { and } x \text { in } y_{h} \\
x^{2}\left(A x^{2}+B x+C\right)=A x^{4}+B x^{3}+C x^{2} & \text { has like-term } x^{2} \text { in } y_{h} \\
x^{3}\left(A x^{2}+B x+C\right)=A x^{5}+B x^{4}+C x^{3} & \text { has no like-terms in } y_{h}
\end{array}
$$

$2^{\text {nd }}$ group:

$$
\begin{array}{ll}
\left(D x^{3}+E x^{2}+F x+G\right) e^{x}=D x^{3} e^{x}+E x^{2} e^{x}+F x e^{x}+G e^{x} & \text { has like-terms } x e^{x} \text { and } e^{x} \text { in } y_{h} \\
x\left(D x^{3}+E x^{2}+F x+G\right) e^{x}=D x^{4} e^{x}+E x^{3} e^{x}+F x^{2} e^{x}+G x e^{x} & \text { has like-term } x e^{x} \text { in } y_{h} \\
x^{2}\left(D x^{3}+E x^{2}+F x+G\right) e^{x}=D x^{5} e^{x}+E x^{4} e^{x}+F x^{3} e^{x}+G x^{2} e^{x} & \text { has no like-terms in } y_{h}
\end{array}
$$

$3^{\text {rd }}$ group:
$(H x+J) e^{-x} \cos x=H x e^{-x} \cos x+J e^{-x} \cos x \quad$ has like-term $e^{-x} \cos x$ in y_{h}
$x(H x+J) e^{-x} \cos x=H x^{2} e^{-x} \cos x+J x e^{-x} \cos x$ has no like-terms in y_{h}
$y_{p}=x^{3}\left(A x^{2}+B x+C\right)+x^{2}\left(D x^{3}+E x^{2}+F x+G\right) e^{x}+x(H x+J) e^{-x} \cos x$
4. Differentiate y_{p}, ignoring all coefficients. Only the like-terms are relevant.

If all like-terms in the derivative are already in y_{p} or y_{h}, jump to step 5 .

If any new like-terms appear that are not already in y_{p} nor y_{h},
add them into y_{p} with new undetermined coefficients, go back to the start of step 4 and repeat.
eg. $\quad y_{h}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} e^{x}+c_{4} x e^{x}+c_{5} e^{-x} \cos x+c_{6} e^{-x} \sin x$
$y_{p}=x^{3}\left(A x^{2}+B x+C\right)+x^{2}\left(D x^{3}+E x^{2}+F x+G\right) e^{x}+x(H x+J) e^{-x} \cos x$
$y_{p}=\left(A x^{5}+B x^{4}+C x^{3}\right)+\left(D x^{5}+E x^{4}+F x^{3}+G x^{2}\right) e^{x}+\left(H x^{2}+J x\right) e^{-x} \cos x$
$y_{p}=A x^{5}+B x^{4}+C x^{3}+D x^{5} e^{x}+E x^{4} e^{x}+F x^{3} e^{x}+G x^{2} e^{x}+H x^{2} e^{-x} \cos x+J x e^{-x} \cos x$
The derivative of y_{p} contains like-terms

$$
\begin{array}{ll}
& x^{4}, x^{3}, x^{5} e^{x}, x^{4} e^{x}, x^{3} e^{x}, x^{2} e^{x}, x e^{-x} \cos x, x^{2} e^{-x} \cos x \\
& \text { which are already in } y_{p}, \\
x^{2}, x e^{x}, e^{-x} \cos x & \text { which are already in } y_{h}, \\
x^{2} e^{-x} \sin x, x e^{-x} \sin x & \text { which are not in } y_{p} \text { nor } y_{h}
\end{array}
$$

Adding the new like-terms into y_{p} with new undetermined coefficients,
$y_{p}=A x^{5}+B x^{4}+C x^{3}+D x^{5} e^{x}+E x^{4} e^{x}+F x^{3} e^{x}+G x^{2} e^{x}+H x^{2} e^{-x} \cos x+J x e^{-x} \cos x+K x^{2} e^{-x} \sin x+L x e^{-x} \sin x$
The derivative of this new y_{p} contains all the like-terms from before (which are now all in y_{p}), plus

$$
e^{-x} \sin x \quad \text { which is already in } y_{h},
$$

and no new like-terms which are not in y_{p} nor y_{h}
So, $y_{p}=A x^{5}+B x^{4}+C x^{3}+D x^{5} e^{x}+E x^{4} e^{x}+F x^{3} e^{x}+G x^{2} e^{x}+H x^{2} e^{-x} \cos x+J x e^{-x} \cos x+K x^{2} e^{-x} \sin x+L x e^{-x} \sin x$
$y_{p}=\left(A x^{5}+B x^{4}+C x^{3}\right)+\left(D x^{5}+E x^{4}+F x^{3}+G x^{2}\right) e^{x}+\left(H x^{2}+J x\right) e^{-x} \cos x+\left(K x^{2}+L x\right) e^{-x} \sin x$

NOTE:

Because of our original restriction on $b(x)$, all of step 4 can be significantly simplified to just the following:
if a group contains a factor $\cos n x$,
add the same group into y_{p} with $\sin n x$ replacing $\cos n x$ using different undetermined coefficients, unless that group is already in y_{p};
similarly, if a group contains a factor $\sin n x$,
add the same group into y_{p} with $\cos n x$ replacing $\sin n x$ using different undetermined coefficients, unless that group is already in y_{p}.
eg. $\quad y_{p}=\left(A x^{5}+B x^{4}+C x^{3}\right)+\left(D x^{5}+E x^{4}+F x^{3}+G x^{2}\right) e^{x}+\left(H x^{2}+J x\right) e^{-x} \cos x$
The group $\left(H x^{2}+J x\right) e^{-x} \cos x$ has a factor of $\cos x$, so add $\left(K x^{2}+L x\right) e^{-x} \sin x$ into y_{p} since it isn't already in y_{p}
$y_{p}=\left(A x^{5}+B x^{4}+C x^{3}\right)+\left(D x^{5}+E x^{4}+F x^{3}+G x^{2}\right)+\left(H x^{2}+J x\right) e^{-x} \cos x+\left(K x^{2}+L x\right) e^{-x} \sin x$
5. Substitute y_{p} into the differential equation to find the values of the undetermined coefficients.

Rewrite y_{p} using the values of the coefficients found.

NOTE:
At the end of step 4, the format of y_{p} is called the form of the particular solution.
At the end of step 5, the resulting y_{p} is called a particular solution.
When you add a particular solution to the y_{h} in step 1, the resulting expression is called the general solution.

