Given the non-homogeneous linear ODE with constant coefficients

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_{n-2} y^{(n-2)} + \dots + a_1 y^{(1)} + a_0 y = b(x)$

where b(x) consists only of sums and products of x^k , e^{mx} , $\cos nx$, $\sin nx$ and constants, where k is a non-negative integer, and m and n are constants:

eg. $y^{(7)} - y^{(5)} - 2y^{(4)} + 2y^{(3)} = x^2(1 - 2e^x) + xe^{-x}(3x^2e^{2x} - 4\cos x)$

1. Solve the corresponding homogeneous linear ODE $a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_{n-2} y^{(n-2)} + \dots + a_1 y^{(1)} + a_0 y = 0$ using the characteristic polynomial.

Call the general solution y_h .

eg.	$y^{(7)} - y^{(5)} - 2y^{(4)} + 2y^{(3)} = 0$	
	$r^7 - r^5 - 2r^4 + 2r^3 = 0$	
	$r^3(r^4 - r^2 - 2r + 2) = 0$	Greatest common factor
	$r^{3}(r^{2}(r^{2}-1)-2(r-1))=0$	Factor by grouping
	$r^{3}(r^{2}(r+1)(r-1)-2(r-1)) = 0$	
	$r^{3}(r-1)(r^{2}(r+1)-2) = 0$	Greatest common factor
	$r^{3}(r-1)(r^{3}+r^{2}-2)=0$	$r^3 + r^2 - 2 = 0$ when $r = 1$, so $r - 1$ is a factor
	$r^{3}(r-1)(r-1)(r^{2}+2r+2) = 0$	Synthetic division
	$r^{3}(r-1)^{2}(r^{2}+2r+2)=0$	
	$r = 0, 0, 0, 1, 1, -1 \pm i$	Quadratic formula

 $y_h = c_0 + c_1 x + c_2 x^2 + c_3 e^x + c_4 x e^x + c_5 e^{-x} \cos x + c_6 e^{-x} \sin x$

2. Distribute all multiplications in b(x), and write b(x) strictly as a sum of product terms.

eg. $b(x) = x^2 - 2x^2e^x + 3x^3e^x - 4xe^{-x}\cos x$

Group the terms of b(x) which have all the same factors, with the exception of constant factors and factors of the form x^k .

eg.
$$b(x) = (x^2) + (-2x^2e^x + 3x^3e^x) + (-4xe^{-x}\cos x)$$

Factor out all those same factors from each group.

Each group of b(x) should now be a sum of terms of the form $c_k x^k$ (ie. polynomials, possibly consisting of just one constant), multiplied (possibly) by factors not containing x^k .

eg. $b(x) = (x^2) + (3x^3 - 2x^2)e^x + (-4x)e^{-x}\cos x$

- 3. For each group in b(x), include that group in y_p , but
 - [i] replace any polynomial factors with general polynomials of the same degree using undetermined coefficients,

eg. $y_p = (Ax^2 + Bx + C) + (Dx^3 + Ex^2 + Fx + G)e^x + (Hx + J)e^{-x}\cos x$

[ii] if that group now contains any term that also appears in y_h , multiply that group by x^d , where d is the smallest positive integer power such that the new group no longer contains any like-terms in y_h .

1st group: eg. $Ax^2 + Bx + C$ has like-terms x^2 , x and a constant in y_{i} $x(Ax^2 + Bx + C) = Ax^3 + Bx^2 + Cx$ has like-terms x^2 and x in y_{μ} $x^{2}(Ax^{2} + Bx + C) = Ax^{4} + Bx^{3} + Cx^{2}$ has like-term x^2 in y_h $x^{3}(Ax^{2} + Bx + C) = Ax^{5} + Bx^{4} + Cx^{3}$ has no like-terms in y_h 2nd group: $(Dx^{3} + Ex^{2} + Fx + G)e^{x} = Dx^{3}e^{x} + Ex^{2}e^{x} + Fxe^{x} + Ge^{x}$ has like-terms xe^x and e^x in y_h $x(Dx^{3} + Ex^{2} + Fx + G)e^{x} = Dx^{4}e^{x} + Ex^{3}e^{x} + Fx^{2}e^{x} + Gxe^{x}$ has like-term xe^x in y_h $x^{2}(Dx^{3} + Ex^{2} + Fx + G)e^{x} = Dx^{5}e^{x} + Ex^{4}e^{x} + Fx^{3}e^{x} + Gx^{2}e^{x}$ has no like-terms in y_{h} 3^{*rd*} group: $(Hx+J)e^{-x}\cos x = Hxe^{-x}\cos x + Je^{-x}\cos x$ has like-term $e^{-x} \cos x$ in y_{μ} $x(Hx+J)e^{-x}\cos x = Hx^2e^{-x}\cos x + Jxe^{-x}\cos x$ has no like-terms in y_{μ} $y_{p} = x^{3}(Ax^{2} + Bx + C) + x^{2}(Dx^{3} + Ex^{2} + Fx + G)e^{x} + x(Hx + J)e^{-x}\cos x$

4. Differentiate y_p , ignoring all coefficients. Only the like-terms are relevant.

If all like-terms in the derivative are already in y_p or y_h , jump to step 5.

If any new like-terms appear that are not already in y_p nor y_h ,

add them into y_p with new undetermined coefficients, go back to the start of step 4 and repeat.

eg.

$$y_{h} = c_{0} + c_{1}x + c_{2}x^{2} + c_{3}e^{x} + c_{4}xe^{x} + c_{5}e^{-x}\cos x + c_{6}e^{-x}\sin x$$

$$y_{p} = x^{3}(Ax^{2} + Bx + C) + x^{2}(Dx^{3} + Ex^{2} + Fx + G)e^{x} + x(Hx + J)e^{-x}\cos x$$

$$y_{p} = (Ax^{5} + Bx^{4} + Cx^{3}) + (Dx^{5} + Ex^{4} + Fx^{3} + Gx^{2})e^{x} + (Hx^{2} + Jx)e^{-x}\cos x$$

$$y_{p} = Ax^{5} + Bx^{4} + Cx^{3} + Dx^{5}e^{x} + Ex^{4}e^{x} + Fx^{3}e^{x} + Gx^{2}e^{x} + Hx^{2}e^{-x}\cos x + Jxe^{-x}\cos x$$

The derivative of y_{p} contains like terms

The derivative of y_p contains like-terms

$$x^{4}, x^{3}, x^{5}e^{x}, x^{4}e^{x}, x^{3}e^{x}, x^{2}e^{x}, xe^{-x}\cos x, x^{2}e^{-x}\cos x \text{ which are already in } y_{p},$$

$$x^{2}, xe^{x}, e^{-x}\cos x \text{ which are already in } y_{h},$$

$$x^{2}e^{-x}\sin x, xe^{-x}\sin x \text{ which are not in } y_{p} \text{ nor } y_{p}$$

Adding the new like-terms into y_n with new undetermined coefficients,

 $y_{p} = Ax^{5} + Bx^{4} + Cx^{3} + Dx^{5}e^{x} + Ex^{4}e^{x} + Fx^{3}e^{x} + Gx^{2}e^{x} + Hx^{2}e^{-x}\cos x + Jxe^{-x}\cos x + Kx^{2}e^{-x}\sin x + Lxe^{-x}\sin x$

The derivative of this new y_n contains all the like-terms from before (which are now all in y_n), plus

 $e^{-x}\sin x$ which is already in y_h ,

and no new like-terms which are not in y_p nor y_h

So, $y_p = Ax^5 + Bx^4 + Cx^3 + Dx^5e^x + Ex^4e^x + Fx^3e^x + Gx^2e^x + Hx^2e^{-x}\cos x + Jxe^{-x}\cos x + Kx^2e^{-x}\sin x + Lxe^{-x}\sin x$ $y_p = (Ax^5 + Bx^4 + Cx^3) + (Dx^5 + Ex^4 + Fx^3 + Gx^2)e^x + (Hx^2 + Jx)e^{-x}\cos x + (Kx^2 + Lx)e^{-x}\sin x$

NOTE:

and

Because of our original restriction on b(x), all of step 4 can be significantly simplified to just the following: if a group contains a factor $\cos nx$, add the same group into y_p with $\sin nx$ replacing $\cos nx$ using different undetermined coefficients, unless that group is already in y_p ; similarly, if a group contains a factor $\sin nx$, add the same group into y_p with $\cos nx$ replacing $\sin nx$ using different undetermined coefficients, unless that group is already in y_p ;

eg. $y_p = (Ax^5 + Bx^4 + Cx^3) + (Dx^5 + Ex^4 + Fx^3 + Gx^2)e^x + (Hx^2 + Jx)e^{-x}\cos x$ The group $(Hx^2 + Jx)e^{-x}\cos x$ has a factor of $\cos x$, so add $(Kx^2 + Lx)e^{-x}\sin x$ into y_p since it isn't already in y_p $y_p = (Ax^5 + Bx^4 + Cx^3) + (Dx^5 + Ex^4 + Fx^3 + Gx^2) + (Hx^2 + Jx)e^{-x}\cos x + (Kx^2 + Lx)e^{-x}\sin x$ 5. Substitute y_p into the differential equation to find the values of the undetermined coefficients. Rewrite y_p using the values of the coefficients found.

NOTE:

At the end of step 4, the format of y_p is called the <u>form of the particular solution</u>.

At the end of step 5, the resulting y_p is called a **particular solution**.

When you add a particular solution to the y_h in step 1, the resulting expression is called the general solution.